All Posts tagged involved

Structural changes in brain with Irritable Bowel Syndrome

Researchers employed imaging techniques to examine and analyze brain anatomical differences between 55 female IBS patients and 48 female control subjects. Patients had moderate IBS severity, with disease duration from one to 34 years (average 11 years). The average age of the participants was 31.

Investigators found both increases and decreases of brain grey matter in specific cortical brain regions.

Even after accounting for additional factors such as anxiety and depression, researchers still discovered differences between IBS patients and control subjects in areas of the brain involved in cognitive and evaluative functions, including the prefrontal and posterior parietal cortices, and in the posterior insula, which represents the primary viscerosensory cortex receiving sensory information from the gastrointestinal tract.

“The grey-matter changes in the posterior insula are particularly interesting since they may play a role in central pain amplification for IBS patients,” said study author David A. Seminowicz, Ph.D., of the Alan Edwards Centre for Research on Pain at McGill University. “This particular finding may point to a specific brain difference or abnormality that plays a role in heightening pain signals that reach the brain from the gut.”

Decreases in grey matter in IBS patients occurred in several regions involved in attentional brain processes, which decide what the body should pay attention to. The thalamus and midbrain also showed reductions, including a region – the periaqueductal grey – that plays a major role in suppressing pain.

“Reductions of grey matter in these key areas may demonstrate an inability of the brain to effectively inhibit pain responses,” Seminowicz said.

The observed decreases in brain grey matter were consistent across IBS patient sub-groups, such as those experiencing more diarrhea-like symptoms than constipation.

“We noticed that the structural brain changes varied between patients who characterized their symptoms primarily as pain, rather than non-painful discomfort,” said Mayer, director of the UCLA Center for Neurobiology of Stress. “In contrast, the length of time a patient has had IBS was not related to these structural brain changes.”

Mayer added that the next steps in the research will include exploring whether genes can be identified that are related to these structural brain changes. In addition, there is a need to increase the study sample size to address male-female differences and to determine if these brain changes are a cause or consequence of having IBS.

The study was funded by the National Institutes of Health.

Additional authors include M. Catherine Bushnell, Ph.D., of McGill University, and Jennifer B. Labus, Joshua A. Bueller, Kirsten Tillisch and Bruce D. Naliboff, Ph.D., all of UCLA.

More

Memories are made of this

“This protein is present in the part of the brain in which memories are stored. We have found that in order for any memory to be laid down this protein, called the M3-muscarinic receptor, has to be activated.

“We have also determined that this protein undergoes a very specific change during the formation of a memory – and that this change is an essential part of memory formation. In this regard our study reveals at least one of the molecular mechanisms that are operating in the brain when we form a memory and as such this represents a major break through in our understanding of how we lay down memories.

“This finding is not only interesting in its own right but has important clinical implications. One of the major symptoms of Alzheimer's disease is memory loss. Our study identifies one of the key processes involved in memory and learning and we state in the paper that drugs designed to target the protein identified in our study would be of benefit in treating Alzheimer's disease.”

Professor Tobin said there was tremendous excitement about the breakthrough the team has made and its potential application: “It has been fascinating to look at the molecular processes involved in memory formation. We were delighted not only with the scientific importance of our finding but also by the prospect that our work could have an impact on the design of drugs for the treatment of Alzheimer's disease.”

More

A high fat diet can disrupt our biological clock

To examine this thesis, Froy and his colleagues, Ph.D. student Maayan Barnea and Zecharia Madar, the Karl Bach Professor of Agricultural Biochemistry, tested whether the clock controls the adiponectin signaling pathway in the liver and, if so, how fasting and a high-fat diet affect this control. Adiponectin is secreted from differentiated adipocytes (fat tissue) and is involved in glucose and lipid metabolism. It increases fatty acid oxidation and promotes insulin sensitivity, two highly important factors in maintaining proper metabolism.

The researchers fed mice either a low-fat or a high-fat diet, followed by a fasting day, then measured components of the adiponectin metabolic pathway at various levels of activity. In mice on the low-fat diet, the adiponectin signaling pathway components exhibited normal circadian rhythmicity. Fasting resulted in a phase advance. The high-fat diet resulted in a phase delay. Fasting raised and the high-fat diet reduced adenosine monophosphate-activated protein kinase (AMPK) levels. This protein is involved in fatty acid metabolism, which could be disrupted by the lower levels.

In an article soon to be published by the journal Endocrinology, the researchers suggest that this high-fat diet could contribute to obesity, not only through its high caloric content, but also by disrupting the phases and daily rhythm of clock genes. They contend also that high fat-induced changes in the clock and the adiponectin signaling pathway may help explain the disruption of other clock-controlled systems associated with metabolic disorders, such as blood pressure levels and the sleep/wake cycle.

More